The Euler Characteristic of Local Systems on the Moduli of Genus 3 Hyperelliptic Curves

نویسنده

  • GILBERTO BINI
چکیده

For a partition λ = {λ1 ≥ λ2 ≥ λ3 ≥ 0} of non-negative integers, we calculate the Euler characteristic of the local system Vλ on the moduli space of genus 3 hyperelliptic curves using a suitable stratification. For some λ of low degree, we make a guess for the motivic Euler characteristic of Vλ using counting curves over finite fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Sn-equivariant Euler characteristic of moduli spaces of hyperelliptic curves

The generating function for Sn-equivariant Euler characteristics of moduli spaces of pointed hyperelliptic curves for any genus g ≥ 2 is calculated. This answer generalizes the known ones for genera 2 and 3 and answers obtained by J. Bergstrom for any genus and n ≤ 7 points.

متن کامل

The Euler characteristic of local systems on the moduli of curves and abelian varieties of genus three

We show how to calculate the Euler characteristic of a local system Vλ associated to an irreducible representation Vλ of the symplectic group of genus 3 on the moduli space M3 of curves of genus 3 and the moduli space A3 of principally polarised abelian varieties of dimension 3.

متن کامل

Non-hyperelliptic curves of genus three over finite fields of characteristic two

Let k be a finite field of even characteristic. We obtain in this paper a complete classification, up to k-isomorphism, of non singular quartic plane curves defined over k. We find explicit rational normal models and we give closed formulas for the total number of k-isomorphism classes. We deduce from these computations the number of k-rational points of the different strata by the Newton polyg...

متن کامل

Families of Hyperelliptic Curves

Throughout this work we deal with a natural number g ≥ 2 and with an algebraically closed field k whose characteristic differs from 2. A hyperelliptic curve of genus g over k is a smooth curve of genus g, that is a double cover of the projective line P. The Riemann-Hurwitz formula implies that this covering should be ramified at 2g + 2 points. Because of this explicit description, hyperelliptic...

متن کامل

The equivariant Euler characteristic of moduli spaces of curves.

We give a formula for the Sn-equivariant Euler characteristics of the moduli spaces Mg,n of genus g curves with n marked points.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004